firtst release
Rev. | ae19f43d09e8bd15267ba57510440da7874c1575 |
---|---|
大小 | 42,078 字节 |
时间 | 2016-04-22 13:38:42 |
作者 | MasaoFujii |
Log Message | Use pg_reload_conf() to reload the configuration file in regression test.
Previously the regression test ran pg_ctl reload command for that purpose.
|
/*-------------------------------------------------------------------------
*
* core.c
* Routines copied from PostgreSQL core distribution.
*
* src/backend/optimizer/path/allpaths.c
* set_append_rel_pathlist()
* generate_mergeappend_paths()
* get_cheapest_parameterized_child_path()
* accumulate_append_subpath()
* standard_join_search()
*
* src/backend/optimizer/path/joinrels.c
* join_search_one_level()
* make_rels_by_clause_joins()
* make_rels_by_clauseless_joins()
* join_is_legal()
* has_join_restriction()
* is_dummy_rel()
* mark_dummy_rel()
* restriction_is_constant_false()
*
* Portions Copyright (c) 1996-2016, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*-------------------------------------------------------------------------
*/
/*
* set_append_rel_pathlist
* Build access paths for an "append relation"
*/
static void
set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
int parentRTindex = rti;
List *live_childrels = NIL;
List *subpaths = NIL;
bool subpaths_valid = true;
List *all_child_pathkeys = NIL;
List *all_child_outers = NIL;
ListCell *l;
/*
* Generate access paths for each member relation, and remember the
* cheapest path for each one. Also, identify all pathkeys (orderings)
* and parameterizations (required_outer sets) available for the member
* relations.
*/
foreach(l, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
int childRTindex;
RangeTblEntry *childRTE;
RelOptInfo *childrel;
ListCell *lcp;
/* append_rel_list contains all append rels; ignore others */
if (appinfo->parent_relid != parentRTindex)
continue;
/* Re-locate the child RTE and RelOptInfo */
childRTindex = appinfo->child_relid;
childRTE = root->simple_rte_array[childRTindex];
childrel = root->simple_rel_array[childRTindex];
/*
* Compute the child's access paths.
*/
set_rel_pathlist(root, childrel, childRTindex, childRTE);
/*
* If child is dummy, ignore it.
*/
if (IS_DUMMY_REL(childrel))
continue;
/*
* Child is live, so add it to the live_childrels list for use below.
*/
live_childrels = lappend(live_childrels, childrel);
/*
* If child has an unparameterized cheapest-total path, add that to
* the unparameterized Append path we are constructing for the parent.
* If not, there's no workable unparameterized path.
*/
if (childrel->cheapest_total_path->param_info == NULL)
subpaths = accumulate_append_subpath(subpaths,
childrel->cheapest_total_path);
else
subpaths_valid = false;
/*
* Collect lists of all the available path orderings and
* parameterizations for all the children. We use these as a
* heuristic to indicate which sort orderings and parameterizations we
* should build Append and MergeAppend paths for.
*/
foreach(lcp, childrel->pathlist)
{
Path *childpath = (Path *) lfirst(lcp);
List *childkeys = childpath->pathkeys;
Relids childouter = PATH_REQ_OUTER(childpath);
/* Unsorted paths don't contribute to pathkey list */
if (childkeys != NIL)
{
ListCell *lpk;
bool found = false;
/* Have we already seen this ordering? */
foreach(lpk, all_child_pathkeys)
{
List *existing_pathkeys = (List *) lfirst(lpk);
if (compare_pathkeys(existing_pathkeys,
childkeys) == PATHKEYS_EQUAL)
{
found = true;
break;
}
}
if (!found)
{
/* No, so add it to all_child_pathkeys */
all_child_pathkeys = lappend(all_child_pathkeys,
childkeys);
}
}
/* Unparameterized paths don't contribute to param-set list */
if (childouter)
{
ListCell *lco;
bool found = false;
/* Have we already seen this param set? */
foreach(lco, all_child_outers)
{
Relids existing_outers = (Relids) lfirst(lco);
if (bms_equal(existing_outers, childouter))
{
found = true;
break;
}
}
if (!found)
{
/* No, so add it to all_child_outers */
all_child_outers = lappend(all_child_outers,
childouter);
}
}
}
}
/*
* If we found unparameterized paths for all children, build an unordered,
* unparameterized Append path for the rel. (Note: this is correct even
* if we have zero or one live subpath due to constraint exclusion.)
*/
if (subpaths_valid)
add_path(rel, (Path *) create_append_path(rel, subpaths, NULL));
/*
* Also build unparameterized MergeAppend paths based on the collected
* list of child pathkeys.
*/
if (subpaths_valid)
generate_mergeappend_paths(root, rel, live_childrels,
all_child_pathkeys);
/*
* Build Append paths for each parameterization seen among the child rels.
* (This may look pretty expensive, but in most cases of practical
* interest, the child rels will expose mostly the same parameterizations,
* so that not that many cases actually get considered here.)
*
* The Append node itself cannot enforce quals, so all qual checking must
* be done in the child paths. This means that to have a parameterized
* Append path, we must have the exact same parameterization for each
* child path; otherwise some children might be failing to check the
* moved-down quals. To make them match up, we can try to increase the
* parameterization of lesser-parameterized paths.
*/
foreach(l, all_child_outers)
{
Relids required_outer = (Relids) lfirst(l);
ListCell *lcr;
/* Select the child paths for an Append with this parameterization */
subpaths = NIL;
subpaths_valid = true;
foreach(lcr, live_childrels)
{
RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
Path *subpath;
subpath = get_cheapest_parameterized_child_path(root,
childrel,
required_outer);
if (subpath == NULL)
{
/* failed to make a suitable path for this child */
subpaths_valid = false;
break;
}
subpaths = accumulate_append_subpath(subpaths, subpath);
}
if (subpaths_valid)
add_path(rel, (Path *)
create_append_path(rel, subpaths, required_outer));
}
}
/*
* generate_mergeappend_paths
* Generate MergeAppend paths for an append relation
*
* Generate a path for each ordering (pathkey list) appearing in
* all_child_pathkeys.
*
* We consider both cheapest-startup and cheapest-total cases, ie, for each
* interesting ordering, collect all the cheapest startup subpaths and all the
* cheapest total paths, and build a MergeAppend path for each case.
*
* We don't currently generate any parameterized MergeAppend paths. While
* it would not take much more code here to do so, it's very unclear that it
* is worth the planning cycles to investigate such paths: there's little
* use for an ordered path on the inside of a nestloop. In fact, it's likely
* that the current coding of add_path would reject such paths out of hand,
* because add_path gives no credit for sort ordering of parameterized paths,
* and a parameterized MergeAppend is going to be more expensive than the
* corresponding parameterized Append path. If we ever try harder to support
* parameterized mergejoin plans, it might be worth adding support for
* parameterized MergeAppends to feed such joins. (See notes in
* optimizer/README for why that might not ever happen, though.)
*/
static void
generate_mergeappend_paths(PlannerInfo *root, RelOptInfo *rel,
List *live_childrels,
List *all_child_pathkeys)
{
ListCell *lcp;
foreach(lcp, all_child_pathkeys)
{
List *pathkeys = (List *) lfirst(lcp);
List *startup_subpaths = NIL;
List *total_subpaths = NIL;
bool startup_neq_total = false;
ListCell *lcr;
/* Select the child paths for this ordering... */
foreach(lcr, live_childrels)
{
RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
Path *cheapest_startup,
*cheapest_total;
/* Locate the right paths, if they are available. */
cheapest_startup =
get_cheapest_path_for_pathkeys(childrel->pathlist,
pathkeys,
NULL,
STARTUP_COST);
cheapest_total =
get_cheapest_path_for_pathkeys(childrel->pathlist,
pathkeys,
NULL,
TOTAL_COST);
/*
* If we can't find any paths with the right order just use the
* cheapest-total path; we'll have to sort it later.
*/
if (cheapest_startup == NULL || cheapest_total == NULL)
{
cheapest_startup = cheapest_total =
childrel->cheapest_total_path;
/* Assert we do have an unparameterized path for this child */
Assert(cheapest_total->param_info == NULL);
}
/*
* Notice whether we actually have different paths for the
* "cheapest" and "total" cases; frequently there will be no point
* in two create_merge_append_path() calls.
*/
if (cheapest_startup != cheapest_total)
startup_neq_total = true;
startup_subpaths =
accumulate_append_subpath(startup_subpaths, cheapest_startup);
total_subpaths =
accumulate_append_subpath(total_subpaths, cheapest_total);
}
/* ... and build the MergeAppend paths */
add_path(rel, (Path *) create_merge_append_path(root,
rel,
startup_subpaths,
pathkeys,
NULL));
if (startup_neq_total)
add_path(rel, (Path *) create_merge_append_path(root,
rel,
total_subpaths,
pathkeys,
NULL));
}
}
/*
* get_cheapest_parameterized_child_path
* Get cheapest path for this relation that has exactly the requested
* parameterization.
*
* Returns NULL if unable to create such a path.
*/
static Path *
get_cheapest_parameterized_child_path(PlannerInfo *root, RelOptInfo *rel,
Relids required_outer)
{
Path *cheapest;
ListCell *lc;
/*
* Look up the cheapest existing path with no more than the needed
* parameterization. If it has exactly the needed parameterization, we're
* done.
*/
cheapest = get_cheapest_path_for_pathkeys(rel->pathlist,
NIL,
required_outer,
TOTAL_COST);
Assert(cheapest != NULL);
if (bms_equal(PATH_REQ_OUTER(cheapest), required_outer))
return cheapest;
/*
* Otherwise, we can "reparameterize" an existing path to match the given
* parameterization, which effectively means pushing down additional
* joinquals to be checked within the path's scan. However, some existing
* paths might check the available joinquals already while others don't;
* therefore, it's not clear which existing path will be cheapest after
* reparameterization. We have to go through them all and find out.
*/
cheapest = NULL;
foreach(lc, rel->pathlist)
{
Path *path = (Path *) lfirst(lc);
/* Can't use it if it needs more than requested parameterization */
if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
continue;
/*
* Reparameterization can only increase the path's cost, so if it's
* already more expensive than the current cheapest, forget it.
*/
if (cheapest != NULL &&
compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
continue;
/* Reparameterize if needed, then recheck cost */
if (!bms_equal(PATH_REQ_OUTER(path), required_outer))
{
path = reparameterize_path(root, path, required_outer, 1.0);
if (path == NULL)
continue; /* failed to reparameterize this one */
Assert(bms_equal(PATH_REQ_OUTER(path), required_outer));
if (cheapest != NULL &&
compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
continue;
}
/* We have a new best path */
cheapest = path;
}
/* Return the best path, or NULL if we found no suitable candidate */
return cheapest;
}
/*
* accumulate_append_subpath
* Add a subpath to the list being built for an Append or MergeAppend
*
* It's possible that the child is itself an Append or MergeAppend path, in
* which case we can "cut out the middleman" and just add its child paths to
* our own list. (We don't try to do this earlier because we need to apply
* both levels of transformation to the quals.)
*
* Note that if we omit a child MergeAppend in this way, we are effectively
* omitting a sort step, which seems fine: if the parent is to be an Append,
* its result would be unsorted anyway, while if the parent is to be a
* MergeAppend, there's no point in a separate sort on a child.
*/
static List *
accumulate_append_subpath(List *subpaths, Path *path)
{
if (IsA(path, AppendPath))
{
AppendPath *apath = (AppendPath *) path;
/* list_copy is important here to avoid sharing list substructure */
return list_concat(subpaths, list_copy(apath->subpaths));
}
else if (IsA(path, MergeAppendPath))
{
MergeAppendPath *mpath = (MergeAppendPath *) path;
/* list_copy is important here to avoid sharing list substructure */
return list_concat(subpaths, list_copy(mpath->subpaths));
}
else
return lappend(subpaths, path);
}
/*
* standard_join_search
* Find possible joinpaths for a query by successively finding ways
* to join component relations into join relations.
*
* 'levels_needed' is the number of iterations needed, ie, the number of
* independent jointree items in the query. This is > 1.
*
* 'initial_rels' is a list of RelOptInfo nodes for each independent
* jointree item. These are the components to be joined together.
* Note that levels_needed == list_length(initial_rels).
*
* Returns the final level of join relations, i.e., the relation that is
* the result of joining all the original relations together.
* At least one implementation path must be provided for this relation and
* all required sub-relations.
*
* To support loadable plugins that modify planner behavior by changing the
* join searching algorithm, we provide a hook variable that lets a plugin
* replace or supplement this function. Any such hook must return the same
* final join relation as the standard code would, but it might have a
* different set of implementation paths attached, and only the sub-joinrels
* needed for these paths need have been instantiated.
*
* Note to plugin authors: the functions invoked during standard_join_search()
* modify root->join_rel_list and root->join_rel_hash. If you want to do more
* than one join-order search, you'll probably need to save and restore the
* original states of those data structures. See geqo_eval() for an example.
*/
RelOptInfo *
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels)
{
int lev;
RelOptInfo *rel;
/*
* This function cannot be invoked recursively within any one planning
* problem, so join_rel_level[] can't be in use already.
*/
Assert(root->join_rel_level == NULL);
/*
* We employ a simple "dynamic programming" algorithm: we first find all
* ways to build joins of two jointree items, then all ways to build joins
* of three items (from two-item joins and single items), then four-item
* joins, and so on until we have considered all ways to join all the
* items into one rel.
*
* root->join_rel_level[j] is a list of all the j-item rels. Initially we
* set root->join_rel_level[1] to represent all the single-jointree-item
* relations.
*/
root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *));
root->join_rel_level[1] = initial_rels;
for (lev = 2; lev <= levels_needed; lev++)
{
ListCell *lc;
/*
* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
* pair of lower-level relations.
*/
join_search_one_level(root, lev);
/*
* Do cleanup work on each just-processed rel.
*/
foreach(lc, root->join_rel_level[lev])
{
rel = (RelOptInfo *) lfirst(lc);
/* Find and save the cheapest paths for this rel */
set_cheapest(rel);
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
}
/*
* We should have a single rel at the final level.
*/
if (root->join_rel_level[levels_needed] == NIL)
elog(ERROR, "failed to build any %d-way joins", levels_needed);
Assert(list_length(root->join_rel_level[levels_needed]) == 1);
rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]);
root->join_rel_level = NULL;
return rel;
}
/*
* join_search_one_level
* Consider ways to produce join relations containing exactly 'level'
* jointree items. (This is one step of the dynamic-programming method
* embodied in standard_join_search.) Join rel nodes for each feasible
* combination of lower-level rels are created and returned in a list.
* Implementation paths are created for each such joinrel, too.
*
* level: level of rels we want to make this time
* root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
*
* The result is returned in root->join_rel_level[level].
*/
void
join_search_one_level(PlannerInfo *root, int level)
{
List **joinrels = root->join_rel_level;
ListCell *r;
int k;
Assert(joinrels[level] == NIL);
/* Set join_cur_level so that new joinrels are added to proper list */
root->join_cur_level = level;
/*
* First, consider left-sided and right-sided plans, in which rels of
* exactly level-1 member relations are joined against initial relations.
* We prefer to join using join clauses, but if we find a rel of level-1
* members that has no join clauses, we will generate Cartesian-product
* joins against all initial rels not already contained in it.
*/
foreach(r, joinrels[level - 1])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
has_join_restriction(root, old_rel))
{
/*
* There are join clauses or join order restrictions relevant to
* this rel, so consider joins between this rel and (only) those
* initial rels it is linked to by a clause or restriction.
*
* At level 2 this condition is symmetric, so there is no need to
* look at initial rels before this one in the list; we already
* considered such joins when we were at the earlier rel. (The
* mirror-image joins are handled automatically by make_join_rel.)
* In later passes (level > 2), we join rels of the previous level
* to each initial rel they don't already include but have a join
* clause or restriction with.
*/
ListCell *other_rels;
if (level == 2) /* consider remaining initial rels */
other_rels = lnext(r);
else /* consider all initial rels */
other_rels = list_head(joinrels[1]);
make_rels_by_clause_joins(root,
old_rel,
other_rels);
}
else
{
/*
* Oops, we have a relation that is not joined to any other
* relation, either directly or by join-order restrictions.
* Cartesian product time.
*
* We consider a cartesian product with each not-already-included
* initial rel, whether it has other join clauses or not. At
* level 2, if there are two or more clauseless initial rels, we
* will redundantly consider joining them in both directions; but
* such cases aren't common enough to justify adding complexity to
* avoid the duplicated effort.
*/
make_rels_by_clauseless_joins(root,
old_rel,
list_head(joinrels[1]));
}
}
/*
* Now, consider "bushy plans" in which relations of k initial rels are
* joined to relations of level-k initial rels, for 2 <= k <= level-2.
*
* We only consider bushy-plan joins for pairs of rels where there is a
* suitable join clause (or join order restriction), in order to avoid
* unreasonable growth of planning time.
*/
for (k = 2;; k++)
{
int other_level = level - k;
/*
* Since make_join_rel(x, y) handles both x,y and y,x cases, we only
* need to go as far as the halfway point.
*/
if (k > other_level)
break;
foreach(r, joinrels[k])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
ListCell *other_rels;
ListCell *r2;
/*
* We can ignore relations without join clauses here, unless they
* participate in join-order restrictions --- then we might have
* to force a bushy join plan.
*/
if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
!has_join_restriction(root, old_rel))
continue;
if (k == other_level)
other_rels = lnext(r); /* only consider remaining rels */
else
other_rels = list_head(joinrels[other_level]);
for_each_cell(r2, other_rels)
{
RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
if (!bms_overlap(old_rel->relids, new_rel->relids))
{
/*
* OK, we can build a rel of the right level from this
* pair of rels. Do so if there is at least one relevant
* join clause or join order restriction.
*/
if (have_relevant_joinclause(root, old_rel, new_rel) ||
have_join_order_restriction(root, old_rel, new_rel))
{
(void) make_join_rel(root, old_rel, new_rel);
}
}
}
}
}
/*----------
* Last-ditch effort: if we failed to find any usable joins so far, force
* a set of cartesian-product joins to be generated. This handles the
* special case where all the available rels have join clauses but we
* cannot use any of those clauses yet. This can only happen when we are
* considering a join sub-problem (a sub-joinlist) and all the rels in the
* sub-problem have only join clauses with rels outside the sub-problem.
* An example is
*
* SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
* WHERE a.w = c.x and b.y = d.z;
*
* If the "a INNER JOIN b" sub-problem does not get flattened into the
* upper level, we must be willing to make a cartesian join of a and b;
* but the code above will not have done so, because it thought that both
* a and b have joinclauses. We consider only left-sided and right-sided
* cartesian joins in this case (no bushy).
*----------
*/
if (joinrels[level] == NIL)
{
/*
* This loop is just like the first one, except we always call
* make_rels_by_clauseless_joins().
*/
foreach(r, joinrels[level - 1])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
make_rels_by_clauseless_joins(root,
old_rel,
list_head(joinrels[1]));
}
/*----------
* When special joins are involved, there may be no legal way
* to make an N-way join for some values of N. For example consider
*
* SELECT ... FROM t1 WHERE
* x IN (SELECT ... FROM t2,t3 WHERE ...) AND
* y IN (SELECT ... FROM t4,t5 WHERE ...)
*
* We will flatten this query to a 5-way join problem, but there are
* no 4-way joins that join_is_legal() will consider legal. We have
* to accept failure at level 4 and go on to discover a workable
* bushy plan at level 5.
*
* However, if there are no special joins and no lateral references
* then join_is_legal() should never fail, and so the following sanity
* check is useful.
*----------
*/
if (joinrels[level] == NIL &&
root->join_info_list == NIL &&
!root->hasLateralRTEs)
elog(ERROR, "failed to build any %d-way joins", level);
}
}
/*
* make_rels_by_clause_joins
* Build joins between the given relation 'old_rel' and other relations
* that participate in join clauses that 'old_rel' also participates in
* (or participate in join-order restrictions with it).
* The join rels are returned in root->join_rel_level[join_cur_level].
*
* Note: at levels above 2 we will generate the same joined relation in
* multiple ways --- for example (a join b) join c is the same RelOptInfo as
* (b join c) join a, though the second case will add a different set of Paths
* to it. This is the reason for using the join_rel_level mechanism, which
* automatically ensures that each new joinrel is only added to the list once.
*
* 'old_rel' is the relation entry for the relation to be joined
* 'other_rels': the first cell in a linked list containing the other
* rels to be considered for joining
*
* Currently, this is only used with initial rels in other_rels, but it
* will work for joining to joinrels too.
*/
static void
make_rels_by_clause_joins(PlannerInfo *root,
RelOptInfo *old_rel,
ListCell *other_rels)
{
ListCell *l;
for_each_cell(l, other_rels)
{
RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
if (!bms_overlap(old_rel->relids, other_rel->relids) &&
(have_relevant_joinclause(root, old_rel, other_rel) ||
have_join_order_restriction(root, old_rel, other_rel)))
{
(void) make_join_rel(root, old_rel, other_rel);
}
}
}
/*
* make_rels_by_clauseless_joins
* Given a relation 'old_rel' and a list of other relations
* 'other_rels', create a join relation between 'old_rel' and each
* member of 'other_rels' that isn't already included in 'old_rel'.
* The join rels are returned in root->join_rel_level[join_cur_level].
*
* 'old_rel' is the relation entry for the relation to be joined
* 'other_rels': the first cell of a linked list containing the
* other rels to be considered for joining
*
* Currently, this is only used with initial rels in other_rels, but it would
* work for joining to joinrels too.
*/
static void
make_rels_by_clauseless_joins(PlannerInfo *root,
RelOptInfo *old_rel,
ListCell *other_rels)
{
ListCell *l;
for_each_cell(l, other_rels)
{
RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
if (!bms_overlap(other_rel->relids, old_rel->relids))
{
(void) make_join_rel(root, old_rel, other_rel);
}
}
}
/*
* join_is_legal
* Determine whether a proposed join is legal given the query's
* join order constraints; and if it is, determine the join type.
*
* Caller must supply not only the two rels, but the union of their relids.
* (We could simplify the API by computing joinrelids locally, but this
* would be redundant work in the normal path through make_join_rel.)
*
* On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
* else it's set to point to the associated SpecialJoinInfo node. Also,
* *reversed_p is set TRUE if the given relations need to be swapped to
* match the SpecialJoinInfo node.
*/
static bool
join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
Relids joinrelids,
SpecialJoinInfo **sjinfo_p, bool *reversed_p)
{
SpecialJoinInfo *match_sjinfo;
bool reversed;
bool unique_ified;
bool must_be_leftjoin;
ListCell *l;
/*
* Ensure output params are set on failure return. This is just to
* suppress uninitialized-variable warnings from overly anal compilers.
*/
*sjinfo_p = NULL;
*reversed_p = false;
/*
* If we have any special joins, the proposed join might be illegal; and
* in any case we have to determine its join type. Scan the join info
* list for matches and conflicts.
*/
match_sjinfo = NULL;
reversed = false;
unique_ified = false;
must_be_leftjoin = false;
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/*
* This special join is not relevant unless its RHS overlaps the
* proposed join. (Check this first as a fast path for dismissing
* most irrelevant SJs quickly.)
*/
if (!bms_overlap(sjinfo->min_righthand, joinrelids))
continue;
/*
* Also, not relevant if proposed join is fully contained within RHS
* (ie, we're still building up the RHS).
*/
if (bms_is_subset(joinrelids, sjinfo->min_righthand))
continue;
/*
* Also, not relevant if SJ is already done within either input.
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
continue;
if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
continue;
/*
* If it's a semijoin and we already joined the RHS to any other rels
* within either input, then we must have unique-ified the RHS at that
* point (see below). Therefore the semijoin is no longer relevant in
* this join path.
*/
if (sjinfo->jointype == JOIN_SEMI)
{
if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
!bms_equal(sjinfo->syn_righthand, rel1->relids))
continue;
if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
!bms_equal(sjinfo->syn_righthand, rel2->relids))
continue;
}
/*
* If one input contains min_lefthand and the other contains
* min_righthand, then we can perform the SJ at this join.
*
* Reject if we get matches to more than one SJ; that implies we're
* considering something that's not really valid.
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
{
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = false;
}
else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
{
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = true;
}
else if (sjinfo->jointype == JOIN_SEMI &&
bms_equal(sjinfo->syn_righthand, rel2->relids) &&
create_unique_path(root, rel2, rel2->cheapest_total_path,
sjinfo) != NULL)
{
/*----------
* For a semijoin, we can join the RHS to anything else by
* unique-ifying the RHS (if the RHS can be unique-ified).
* We will only get here if we have the full RHS but less
* than min_lefthand on the LHS.
*
* The reason to consider such a join path is exemplified by
* SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
* If we insist on doing this as a semijoin we will first have
* to form the cartesian product of A*B. But if we unique-ify
* C then the semijoin becomes a plain innerjoin and we can join
* in any order, eg C to A and then to B. When C is much smaller
* than A and B this can be a huge win. So we allow C to be
* joined to just A or just B here, and then make_join_rel has
* to handle the case properly.
*
* Note that actually we'll allow unique-ified C to be joined to
* some other relation D here, too. That is legal, if usually not
* very sane, and this routine is only concerned with legality not
* with whether the join is good strategy.
*----------
*/
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = false;
unique_ified = true;
}
else if (sjinfo->jointype == JOIN_SEMI &&
bms_equal(sjinfo->syn_righthand, rel1->relids) &&
create_unique_path(root, rel1, rel1->cheapest_total_path,
sjinfo) != NULL)
{
/* Reversed semijoin case */
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = true;
unique_ified = true;
}
else
{
/*
* Otherwise, the proposed join overlaps the RHS but isn't a valid
* implementation of this SJ. But don't panic quite yet: the RHS
* violation might have occurred previously, in one or both input
* relations, in which case we must have previously decided that
* it was OK to commute some other SJ with this one. If we need
* to perform this join to finish building up the RHS, rejecting
* it could lead to not finding any plan at all. (This can occur
* because of the heuristics elsewhere in this file that postpone
* clauseless joins: we might not consider doing a clauseless join
* within the RHS until after we've performed other, validly
* commutable SJs with one or both sides of the clauseless join.)
* This consideration boils down to the rule that if both inputs
* overlap the RHS, we can allow the join --- they are either
* fully within the RHS, or represent previously-allowed joins to
* rels outside it.
*/
if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
bms_overlap(rel2->relids, sjinfo->min_righthand))
continue; /* assume valid previous violation of RHS */
/*
* The proposed join could still be legal, but only if we're
* allowed to associate it into the RHS of this SJ. That means
* this SJ must be a LEFT join (not SEMI or ANTI, and certainly
* not FULL) and the proposed join must not overlap the LHS.
*/
if (sjinfo->jointype != JOIN_LEFT ||
bms_overlap(joinrelids, sjinfo->min_lefthand))
return false; /* invalid join path */
/*
* To be valid, the proposed join must be a LEFT join; otherwise
* it can't associate into this SJ's RHS. But we may not yet have
* found the SpecialJoinInfo matching the proposed join, so we
* can't test that yet. Remember the requirement for later.
*/
must_be_leftjoin = true;
}
}
/*
* Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
* proposed join can't associate into an SJ's RHS.
*
* Also, fail if the proposed join's predicate isn't strict; we're
* essentially checking to see if we can apply outer-join identity 3, and
* that's a requirement. (This check may be redundant with checks in
* make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
*/
if (must_be_leftjoin &&
(match_sjinfo == NULL ||
match_sjinfo->jointype != JOIN_LEFT ||
!match_sjinfo->lhs_strict))
return false; /* invalid join path */
/*
* We also have to check for constraints imposed by LATERAL references.
*/
if (root->hasLateralRTEs)
{
bool lateral_fwd;
bool lateral_rev;
Relids join_lateral_rels;
/*
* The proposed rels could each contain lateral references to the
* other, in which case the join is impossible. If there are lateral
* references in just one direction, then the join has to be done with
* a nestloop with the lateral referencer on the inside. If the join
* matches an SJ that cannot be implemented by such a nestloop, the
* join is impossible.
*
* Also, if the lateral reference is only indirect, we should reject
* the join; whatever rel(s) the reference chain goes through must be
* joined to first.
*
* Another case that might keep us from building a valid plan is the
* implementation restriction described by have_dangerous_phv().
*/
lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
if (lateral_fwd && lateral_rev)
return false; /* have lateral refs in both directions */
if (lateral_fwd)
{
/* has to be implemented as nestloop with rel1 on left */
if (match_sjinfo &&
(reversed ||
unique_ified ||
match_sjinfo->jointype == JOIN_FULL))
return false; /* not implementable as nestloop */
/* check there is a direct reference from rel2 to rel1 */
if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
return false; /* only indirect refs, so reject */
/* check we won't have a dangerous PHV */
if (have_dangerous_phv(root, rel1->relids, rel2->lateral_relids))
return false; /* might be unable to handle required PHV */
}
else if (lateral_rev)
{
/* has to be implemented as nestloop with rel2 on left */
if (match_sjinfo &&
(!reversed ||
unique_ified ||
match_sjinfo->jointype == JOIN_FULL))
return false; /* not implementable as nestloop */
/* check there is a direct reference from rel1 to rel2 */
if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
return false; /* only indirect refs, so reject */
/* check we won't have a dangerous PHV */
if (have_dangerous_phv(root, rel2->relids, rel1->lateral_relids))
return false; /* might be unable to handle required PHV */
}
/*
* LATERAL references could also cause problems later on if we accept
* this join: if the join's minimum parameterization includes any rels
* that would have to be on the inside of an outer join with this join
* rel, then it's never going to be possible to build the complete
* query using this join. We should reject this join not only because
* it'll save work, but because if we don't, the clauseless-join
* heuristics might think that legality of this join means that some
* other join rel need not be formed, and that could lead to failure
* to find any plan at all. We have to consider not only rels that
* are directly on the inner side of an OJ with the joinrel, but also
* ones that are indirectly so, so search to find all such rels.
*/
join_lateral_rels = min_join_parameterization(root, joinrelids,
rel1, rel2);
if (join_lateral_rels)
{
Relids join_plus_rhs = bms_copy(joinrelids);
bool more;
do
{
more = false;
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
!bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
{
join_plus_rhs = bms_add_members(join_plus_rhs,
sjinfo->min_righthand);
more = true;
}
/* full joins constrain both sides symmetrically */
if (sjinfo->jointype == JOIN_FULL &&
bms_overlap(sjinfo->min_righthand, join_plus_rhs) &&
!bms_is_subset(sjinfo->min_lefthand, join_plus_rhs))
{
join_plus_rhs = bms_add_members(join_plus_rhs,
sjinfo->min_lefthand);
more = true;
}
}
} while (more);
if (bms_overlap(join_plus_rhs, join_lateral_rels))
return false; /* will not be able to join to some RHS rel */
}
}
/* Otherwise, it's a valid join */
*sjinfo_p = match_sjinfo;
*reversed_p = reversed;
return true;
}
/*
* has_join_restriction
* Detect whether the specified relation has join-order restrictions,
* due to being inside an outer join or an IN (sub-SELECT),
* or participating in any LATERAL references or multi-rel PHVs.
*
* Essentially, this tests whether have_join_order_restriction() could
* succeed with this rel and some other one. It's OK if we sometimes
* say "true" incorrectly. (Therefore, we don't bother with the relatively
* expensive has_legal_joinclause test.)
*/
static bool
has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
{
ListCell *l;
if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
return true;
foreach(l, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
!bms_equal(rel->relids, phinfo->ph_eval_at))
return true;
}
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/* ignore full joins --- other mechanisms preserve their ordering */
if (sjinfo->jointype == JOIN_FULL)
continue;
/* ignore if SJ is already contained in rel */
if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
bms_is_subset(sjinfo->min_righthand, rel->relids))
continue;
/* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
bms_overlap(sjinfo->min_righthand, rel->relids))
return true;
}
return false;
}
/*
* is_dummy_rel --- has relation been proven empty?
*/
static bool
is_dummy_rel(RelOptInfo *rel)
{
return IS_DUMMY_REL(rel);
}
/*
* Mark a relation as proven empty.
*
* During GEQO planning, this can get invoked more than once on the same
* baserel struct, so it's worth checking to see if the rel is already marked
* dummy.
*
* Also, when called during GEQO join planning, we are in a short-lived
* memory context. We must make sure that the dummy path attached to a
* baserel survives the GEQO cycle, else the baserel is trashed for future
* GEQO cycles. On the other hand, when we are marking a joinrel during GEQO,
* we don't want the dummy path to clutter the main planning context. Upshot
* is that the best solution is to explicitly make the dummy path in the same
* context the given RelOptInfo is in.
*/
static void
mark_dummy_rel(RelOptInfo *rel)
{
MemoryContext oldcontext;
/* Already marked? */
if (is_dummy_rel(rel))
return;
/* No, so choose correct context to make the dummy path in */
oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
/* Set dummy size estimate */
rel->rows = 0;
/* Evict any previously chosen paths */
rel->pathlist = NIL;
/* Set up the dummy path */
add_path(rel, (Path *) create_append_path(rel, NIL, NULL));
/* Set or update cheapest_total_path and related fields */
set_cheapest(rel);
MemoryContextSwitchTo(oldcontext);
}
/*
* restriction_is_constant_false --- is a restrictlist just FALSE?
*
* In cases where a qual is provably constant FALSE, eval_const_expressions
* will generally have thrown away anything that's ANDed with it. In outer
* join situations this will leave us computing cartesian products only to
* decide there's no match for an outer row, which is pretty stupid. So,
* we need to detect the case.
*
* If only_pushed_down is TRUE, then consider only pushed-down quals.
*/
static bool
restriction_is_constant_false(List *restrictlist, bool only_pushed_down)
{
ListCell *lc;
/*
* Despite the above comment, the restriction list we see here might
* possibly have other members besides the FALSE constant, since other
* quals could get "pushed down" to the outer join level. So we check
* each member of the list.
*/
foreach(lc, restrictlist)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Assert(IsA(rinfo, RestrictInfo));
if (only_pushed_down && !rinfo->is_pushed_down)
continue;
if (rinfo->clause && IsA(rinfo->clause, Const))
{
Const *con = (Const *) rinfo->clause;
/* constant NULL is as good as constant FALSE for our purposes */
if (con->constisnull)
return true;
if (!DatumGetBool(con->constvalue))
return true;
}
}
return false;
}