Rev. | 3a9fb5caa578dbd583d5c63ef9c2ec4f347dd921 |
---|---|
大小 | 6,806 字节 |
时间 | 2011-03-04 09:23:51 |
作者 | lorenzo |
Log Message | This code combines two clusters into a new one. |
#! /usr/bin/env python
from enthought.mayavi import mlab
import scipy as s
import numpy as n
import scipy.spatial as sp
import scipy.linalg as sl
import sys
def random_rot():
theta=s.arccos(1.-2.*s.random.uniform(0.,1.,1)[0])-s.pi/2.
phi=s.random.uniform(-s.pi,s.pi,1)[0]
psi=s.random.uniform(-s.pi,s.pi,1)[0]
oneone=s.cos(theta)*s.cos(psi)
onetwo=-s.cos(phi)*s.sin(psi)+s.sin(phi)*s.sin(theta)*s.cos(psi)
onethree=s.sin(phi)*s.sin(psi)+s.cos(phi)*s.sin(theta)*s.cos(psi)
twoone= s.cos(theta)*s.sin(psi)
twotwo=s.cos(phi)*s.cos(psi)+s.sin(phi)*s.sin(theta)*s.sin(psi)
twothree=-s.sin(phi)*s.cos(psi)+s.cos(phi)*s.sin(theta)*s.sin(psi)
threeone=-s.sin(theta)
threetwo=s.sin(phi)*s.cos(theta)
threethree=s.cos(phi)*s.cos(theta)
my_mat=s.zeros(9).reshape((3,3))
my_mat[0,0]=oneone
my_mat[0,1]=onetwo
my_mat[0,2]=onethree
my_mat[1,0]=twoone
my_mat[1,1]=twotwo
my_mat[1,2]=twothree
my_mat[2,0]=threeone
my_mat[2,1]=threetwo
my_mat[2,2]=threethree
return my_mat
def accept_reject_rotation(cluster_1, cluster_2, epsi):
while(True):
random_rot_mat= random_rot()
n_row_col=s.shape(cluster_1)
cluster_rot=s.zeros(s.prod(n_row_col)).reshape((n_row_col[0],\
n_row_col[1]))
for i in s.arange(n_row_col[0]):
cluster_rot[i,:]=s.dot(random_rot_mat, cluster_1[i,:])
dist_list = euclidean_distances(cluster_rot, cluster_2)
# print "dist_list is, ", dist_list
# if (not (dist_list < (2.-epsi)).any()) and \
if (not (dist_list < 2.).any()) and \
(dist_list<=(2.+epsi)).any():
cluster_new=s.vstack((cluster_rot, cluster_2))
return cluster_new
def euclidean_distances(X, Y, Y_norm_squared=None, squared=False):
"""
Considering the rows of X (and Y=X) as vectors, compute the
distance matrix between each pair of vectors.
Parameters
----------
X: array of shape (n_samples_1, n_features)
Y: array of shape (n_samples_2, n_features)
Y_norm_squared: array [n_samples_2], optional
pre-computed (Y**2).sum(axis=1)
squared: boolean, optional
This routine will return squared Euclidean distances instead.
Returns
-------
distances: array of shape (n_samples_1, n_samples_2)
Examples
--------
>>> from scikits.learn.metrics.pairwise import euclidean_distances
>>> X = [[0, 1], [1, 1]]
>>> # distrance between rows of X
>>> euclidean_distances(X, X)
array([[ 0., 1.],
[ 1., 0.]])
>>> # get distance to origin
>>> euclidean_distances(X, [[0, 0]])
array([[ 1. ],
[ 1.41421356]])
"""
# should not need X_norm_squared because if you could precompute that as
# well as Y, then you should just pre-compute the output and not even
# call this function.
if X is Y:
X = Y = n.asanyarray(X)
else:
X = n.asanyarray(X)
Y = n.asanyarray(Y)
if X.shape[1] != Y.shape[1]:
raise ValueError("Incompatible dimension for X and Y matrices")
XX = n.sum(X * X, axis=1)[:, n.newaxis]
if X is Y: # shortcut in the common case euclidean_distances(X, X)
YY = XX.T
elif Y_norm_squared is None:
YY = Y.copy()
YY **= 2
YY = n.sum(YY, axis=1)[n.newaxis, :]
else:
YY = n.asanyarray(Y_norm_squared)
if YY.shape != (Y.shape[0],):
raise ValueError("Incompatible dimension for Y and Y_norm_squared")
YY = YY[n.newaxis, :]
# TODO:
# a faster cython implementation would do the dot product first,
# and then add XX, add YY, and do the clipping of negative values in
# a single pass over the output matrix.
distances = XX + YY # Using broadcasting
distances -= 2 * n.dot(X, Y.T)
distances = n.maximum(distances, 0)
if squared:
return distances
else:
return n.sqrt(distances)
euclidian_distances = euclidean_distances # both spelling for backward compat
def find_CM(cluster):
CM=s.mean(cluster, axis=0)
return CM
def relocate_cluster(cluster):
cluster_shift=find_CM(cluster)
cluster[:,0]=cluster[:,0]-cluster_shift[0]
cluster[:,1]=cluster[:,1]-cluster_shift[1]
cluster[:,2]=cluster[:,2]-cluster_shift[2]
return cluster
def dist_gamma_clusters(cluster_1, cluster_2, kf, df):
N1=s.shape(cluster_1)[0]*1.
N2=s.shape(cluster_2)[0]*1.
print "N1 and N2 are, ", N1, N2
R1sq=s.var(cluster_1[:,0])+s.var(cluster_1[:,1])+\
s.var(cluster_1[:,2]) +1.
R2sq=s.var(cluster_2[:,0])+s.var(cluster_2[:,1])+\
s.var(cluster_2[:,2]) +1.
R1=s.sqrt(R1sq)
R2=s.sqrt(R2sq)
print "R1 is, ", R1
print "R2 is, ", R2
gamma_sq=((N1+N2)**2.)/(N1*N2)*((N1+N2)/kf)**(2./df)\
-(N1+N2)/N2*(R1**2.)-(N1+N2)/N1*(R2**2.)
a=((N1+N2)**2.)/(N1*N2)*((N1+N2)/kf)**(2./df)
b=(N1+N2)/N2*R1**2.
c=(N1+N2)/N1*R2**2.
print "a,b,c are, ", a,b,c
print "gamma_sq is, ", gamma_sq
my_gamma=s.sqrt(gamma_sq)
return my_gamma
kf=1.3
df= 1.8 # 1.8
epsi=0.01
cluster_1=n.loadtxt("aggregate_number_21_.dat")
cluster_1=relocate_cluster(cluster_1)
cm1=find_CM(cluster_1)
print "cm1 is, ", cm1
print "cluster_1 is, ", cluster_1
cluster_2=n.loadtxt("aggregate_number_87_.dat")
cluster_2=relocate_cluster(cluster_2)
print "cluster_2 is, ", cluster_2
gamma=dist_gamma_clusters(cluster_1, cluster_2, kf, df)
print "gamma is, ", gamma
cluster_2[:,0]=cluster_2[:,0]+gamma
cm2=find_CM(cluster_2)
print "cm2 is, ", cm2
list_dist=euclidean_distances(cluster_1, cluster_2)
print "len(list_dist) is, ", s.prod(s.shape(list_dist))
print "list_dist is, ", list_dist
# x=cluster_2[:,0]
# y=cluster_2[:,1]
# z=cluster_2[:,2]
# mlab.clf()
# pts = mlab.points3d(x, y, z, scale_mode='none', resolution=20,\
# color=(0,0,1),scale_factor=2.)
# #mlab.axes(pts)
# mlab.show()
my_rot=random_rot()
mat_calc=s.dot( my_rot,s.transpose(my_rot))
my_det=sl.det(my_rot)
print "mat_calc is, ", mat_calc
print "my_det is, ", my_det
cluster_agglomerate=accept_reject_rotation(cluster_1, cluster_2, epsi)
n.savetxt("aggregate_agglomerate.dat", cluster_agglomerate)
x=cluster_agglomerate[:,0]
y=cluster_agglomerate[:,1]
z=cluster_agglomerate[:,2]
mlab.clf()
pts = mlab.points3d(x, y, z, scale_mode='none', resolution=20,\
color=(0,0,1),scale_factor=2.)
#mlab.axes(pts)
mlab.show()
R1_agg_sq=s.var(cluster_agglomerate[:,0])+s.var(cluster_agglomerate[:,1])+\
s.var(cluster_agglomerate[:,2]) +1.
R1_agg=s.sqrt(R1_agg_sq)
print "R1agg is, ", R1_agg
print "So far so good"