l4P5 (beta-003) | 2009-05-05 20:38 |
Loc (beta-005) | 2009-05-05 20:33 |
wrj4p5 (alpha-011) | 2009-05-05 20:41 |
- /*[class] EqSys 5/20/2008 by Classiclll
- *
- *Model of multi-value Vector Functions, the Equation System
- * f(x) = [ fi(x) | fi : R^n -> R^m ]
- * can solve the multi-value non-linear equation, with Simplex(Nelder) and Newton
- * f(x) = 0
- */
- EqSys(int dom, int rng) //constructor with dimension of domain & codomain.
- int domDim() //dimension of the domain (n)
- int rngDim() //dimension of the range (m)
- abstract Vec valueAt(Vec x) //value of the equation system(R^n -> R^m) at x
- //Jacobian at x, if not continuouse, you can return diffAt(x,d)
- abstract Mat jacobAt(Vec x)
- /* [Sample] Jacobian of f(x) = { x+y+z-1, y+z-1, x+z-1 }
- double[][] jacobi = { {1, 1, 1}, // { {dxf0(X), dyf0(X), dzf0(X)}
- {0, 1, 1}, // {dxf1(X), dyf1(X), dzf1(X)}
- {1, 0, 1} }; // {dxf2(X), dyf2(X), dzf2(X)} }
- */
- Vec diffAt(Vec x, Vec d) // overwride if needed
- Vec solveByNewton(Vec x0) // find the solution by the newton, start at x0
- Vec solveBySimplex(Vec x0, int limit)
- // find the solution by the simplex, start at x0
- Vec solveBySimplex(Vec x0, int limit, int tryal)
- // find the solution by the simplex, start at x0
[PageInfo]
LastUpdate: 2008-08-08 12:03:09, ModifiedBy: classiclll
[License]
Creative Commons 2.1 Attribution-ShareAlike
[Permissions]
view:all, edit:login users, delete/config:members